[ad_1]
Puzzling Stack Exchange is a question and answer site for those who create, solve, and study puzzles. It only takes a minute to sign up.
Anybody can ask a question
Anybody can answer
The best answers are voted up and rise to the top
Asked
Viewed
12 times
I recently made a self referential cipher (meaning that the key is the same as what is being decoded) a while back and was planning on putting it on here after making the cipher a bit more difficult. I actually decided to have a few more layers put on my puzzle before posting it on here as to not make it too easy. So, after putting it through Morse code a [redacted] amount of times, I present to you my self-referential cipher:
-….- -….- / -….- .-.-.- -….- .-.-.- / -….- .-.-.- -….- .-.-.- / -….- -….- .-.-.- / -..-. / .-.-.- .-.-.- .-.-.- / -….- .-.-.- -….- .-.-.- / -….- .-.-.- -….- .-.-.- / -..-. / -….- .-.-.- -….- .-.-.- / .-.-.- -….- / -..-. / -….- .-.-.- -….- / -….- .-.-.- -….- .-.-.- / .-.-.- -….- -….- / -….- -….- .-.-.- -….- / -….- -….- .-.-.- -….- / .-.-.- -….- / -….- -….- / -..-. / -….- .-.-.- -….- -….- / .-.-.- -….- -….- / -..-. / -….- .-.-.- -….- / .-.-.- .-.-.- / .-.-.- -….- -….- / -….- .-.-.- -….- / -..-. / .-.-.- .-.-.- / .-.-.- .-.-.- / -….- .-.-.- -….- / .-.-.- .-.-.- / .-.-.- .-.-.- / .-.-.- .-.-.- / .-.-.- -….- / -….- -….- / -….- -….- .-.-.- -….- / .-.-.- -….- / .-.-.- -….- -….- / -..-. / .-.-.- / -….- -….- .-.-.- -….- / .-.-.- / -….- -….- -….- / .-.-.- .-.-.- / .-.-.- .-.-.-
A perfect answer would include:
How to decrypt it
The final text.
Also the only reason I didn’t just leave the cipher as it was for people to solve was only because it would just be too easy then IMO.
$\endgroup$
Taking off the Morse code produces:
MCCG SCC CA KCWQQAM YW KIWK IIKIIIAMQAW EQEOII
Only even letters of the alphabet (
ACEGIKMOQSUWY
) appear. This is characteristic of a Vigenere cipher where the plaintext and key are identical. This is equivalent to an Affine cipher with M=2 and B=0, which is technically not allowed as an Affine key because there is no unique decipherment. That’s fine because there are only two ways to decipher each letter. The two substitutions to use are:Cipher: ACEGIKMOQSUWY Plain 1: ABCDEFGHIJKLM Plain 2: NOPQRSTUVWXYZ
Apply each substitution to the ciphertext and choose the most likely of the two letters at each position to read out the plaintext.
Cipher: MCCG SCC CA KCWQQAM YW KIWK IIKIIIAMQAW EQEOII Plain 1: GBBD JBB BA FBLIIAG ML FELF EEFEEEAGIAL CICHEE Plain 2: TOOQ WOO ON SOYVVNT ZY SRYS RRSRRRNTVNY PVPURR Plain: good job on solving my self referential cipher
$\endgroup$
[ad_2]