[ad_1]
There are a complete of:
Twelve options:
1100 101 10 110 1111 1 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 101 10 110 1111 1 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 10 1101 101 1111 1011 1001 100 111 0 11 1010 1110 1000 110 1 1100 10 110 1101 1111 1011 1001 100 111 0 11 1010 1110 1000 1 101 1100 101 10 1101 1111 1011 1001 100 111 0 11 1010 1110 1000 110 1 1100 10 110 1 101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 101 10 110 1 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 10 1101 101 1111 1011 1001 100 1110 11 1010 111 0 1000 110 1 1100 10 110 1101 1111 1011 1001 100 1110 11 1010 111 0 1000 1 101 1100 101 10 1101 1111 1011 1001 100 1110 11 1010 111 0 1000 110 1 1100 10 110 1 101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 101 10 110 1 1111 1011 1001 100 1110 11 1010 111 0 1000 1101
Firstly, there’s just one potential place to take 1010 and 1000:
1100101101101111110111001100111011 1010 1110 1000 1101
Then there is just one block of 4 or extra 1’s which should comprise the 1111.
We now want three consecutive 1’s for every of 111 and 1110.
There aren’t any remaining blocks of 4 or extra 1’s, so 111 should be adopted by 0 (the one quantity that begins with “0”).
And neither of them can use the “11100” part which might require one other quantity beginning with “0”.That offers us the next 4 prospects:
110010110110 1111 110111001100 111 0 11 1010 1110 1000 1101 110010110110 1111 110111001100 1110 11 1010 111 0 1000 1101 1100101101101 1111 10111001100 111 0 11 1010 1110 1000 1101 1100101101101 1111 10111001100 1110 11 1010 111 0 1000 1101
Now search for 1001. We won’t have 1,1001 initially of the string as a result of that leaves one other quantity beginning with “0”).
So there is just one choice in every case:110010110110 1111 11011 1001 100 111 0 11 1010 1110 1000 1101 110010110110 1111 11011 1001 100 1110 11 1010 111 0 1000 1101 1100101101101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100101101101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101
Now we now have some remoted sections that can not be cut up additional (100, 11), figuring out two extra numbers.
And the 1100 can solely be initially:1100 10110110 1111 11011 1001 100 111 0 11 1010 1110 1000 1101 1100 10110110 1111 11011 1001 100 1110 11 1010 111 0 1000 1101 1100 101101101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 101101101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101
Now 1011 can solely go in a single place with out leaving a number one “0”:
1100 10110110 1111 1 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 10110110 1111 1 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 101101101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 101101101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101
In two of the 4 instances, that additionally isolates the 1, which implies the ultimate part can’t be cut up and should be 1101.
Within the different two instances, we now have two different locations for the 1101, increasing our prospects to eight:1100 10110110 1111 1 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 10110110 1111 1 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 10 1101 101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 10110 1101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 101101101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 10 1101 101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 10110 1101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 101101101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101
Lastly we nonetheless want to suit 101 and 110 someplace.
There are just one or two methods to do this in every case, resulting in the next twelve options1100 101 10 110 1111 1 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 101 10 110 1111 1 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 10 1101 101 1111 1011 1001 100 111 0 11 1010 1110 1000 110 1 1100 10 110 1101 1111 1011 1001 100 111 0 11 1010 1110 1000 1 101 1100 101 10 1101 1111 1011 1001 100 111 0 11 1010 1110 1000 110 1 1100 10 110 1 101 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 101 10 110 1 1111 1011 1001 100 111 0 11 1010 1110 1000 1101 1100 10 1101 101 1111 1011 1001 100 1110 11 1010 111 0 1000 110 1 1100 10 110 1101 1111 1011 1001 100 1110 11 1010 111 0 1000 1 101 1100 101 10 1101 1111 1011 1001 100 1110 11 1010 111 0 1000 110 1 1100 10 110 1 101 1111 1011 1001 100 1110 11 1010 111 0 1000 1101 1100 101 10 110 1 1111 1011 1001 100 1110 11 1010 111 0 1000 1101
[ad_2]