$\begingroup$

This is a progressive matrix problem that I created myself and I can confirm that there is only one unique solution. It may look complex at first, but is pretty easy when you figure out what to do.
\begin{align*}
\begin{bmatrix}1&2\\3&4\end{bmatrix}&&\begin{bmatrix}7&10\\15&22\end{bmatrix}&&\begin{bmatrix}37&54\\81&118\end{bmatrix}\\
\begin{bmatrix}199&290\\435&634\end{bmatrix}&&\begin{bmatrix}1069&1158\\2237&3406\end{bmatrix}&&\begin{bmatrix}5743&8370\\12555&18298\end{bmatrix}\\
\begin{bmatrix}30853&44966\\67449&98302\end{bmatrix}&&\begin{bmatrix}165751&241570\\362355&528106\end{bmatrix}&&\begin{bmatrix}a&b\\c&d\end{bmatrix}
\end{align*}

$$\text{Is }\begin{bmatrix}a&b\\c&d\end{bmatrix}\text:\\\begin{align}a.&\quad\begin{bmatrix}890461&1297782\\1946673&2837134\end{bmatrix}\\b.&\quad\begin{bmatrix}890462&1299782\\1846673&2937134\end{bmatrix}\\c.&\quad\begin{bmatrix}1003157&136573\\1934333&3031238\end{bmatrix}\\d.&\quad\begin{bmatrix}890461&1297782\\1946673&2837135\end{bmatrix}\end{align}$$Sorry for the matrices not being spaced out too well, unsure how I would make this better

$\endgroup$